-
1 initial power level
Космонавтика: начальная мощность -
2 initial power level
Englsh-Russian aviation and space dictionary > initial power level
-
3 initial power level
n початкова потужність -
4 level
уровень; нивелир; величина; выравнивать, нивелировать; иметь величину; находиться на уровне; горизонтальныйflight level 370 — высота полёта [эшелон] 37000 футов (11300 м)
level of pilot knowledge — уровень знаний [подготовки] лётчика
-
5 modular data center
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > modular data center
-
6 Historical Portugal
Before Romans described western Iberia or Hispania as "Lusitania," ancient Iberians inhabited the land. Phoenician and Greek trading settlements grew up in the Tagus estuary area and nearby coasts. Beginning around 202 BCE, Romans invaded what is today southern Portugal. With Rome's defeat of Carthage, Romans proceeded to conquer and rule the western region north of the Tagus, which they named Roman "Lusitania." In the fourth century CE, as Rome's rule weakened, the area experienced yet another invasion—Germanic tribes, principally the Suevi, who eventually were Christianized. During the sixth century CE, the Suevi kingdom was superseded by yet another Germanic tribe—the Christian Visigoths.A major turning point in Portugal's history came in 711, as Muslim armies from North Africa, consisting of both Arab and Berber elements, invaded the Iberian Peninsula from across the Straits of Gibraltar. They entered what is now Portugal in 714, and proceeded to conquer most of the country except for the far north. For the next half a millennium, Islam and Muslim presence in Portugal left a significant mark upon the politics, government, language, and culture of the country.Islam, Reconquest, and Portugal Created, 714-1140The long frontier struggle between Muslim invaders and Christian communities in the north of the Iberian peninsula was called the Reconquista (Reconquest). It was during this struggle that the first dynasty of Portuguese kings (Burgundian) emerged and the independent monarchy of Portugal was established. Christian forces moved south from what is now the extreme north of Portugal and gradually defeated Muslim forces, besieging and capturing towns under Muslim sway. In the ninth century, as Christian forces slowly made their way southward, Christian elements were dominant only in the area between Minho province and the Douro River; this region became known as "territorium Portu-calense."In the 11th century, the advance of the Reconquest quickened as local Christian armies were reinforced by crusading knights from what is now France and England. Christian forces took Montemor (1034), at the Mondego River; Lamego (1058); Viseu (1058); and Coimbra (1064). In 1095, the king of Castile and Léon granted the country of "Portu-cale," what became northern Portugal, to a Burgundian count who had emigrated from France. This was the foundation of Portugal. In 1139, a descendant of this count, Afonso Henriques, proclaimed himself "King of Portugal." He was Portugal's first monarch, the "Founder," and the first of the Burgundian dynasty, which ruled until 1385.The emergence of Portugal in the 12th century as a separate monarchy in Iberia occurred before the Christian Reconquest of the peninsula. In the 1140s, the pope in Rome recognized Afonso Henriques as king of Portugal. In 1147, after a long, bloody siege, Muslim-occupied Lisbon fell to Afonso Henriques's army. Lisbon was the greatest prize of the 500-year war. Assisting this effort were English crusaders on their way to the Holy Land; the first bishop of Lisbon was an Englishman. When the Portuguese captured Faro and Silves in the Algarve province in 1248-50, the Reconquest of the extreme western portion of the Iberian peninsula was complete—significantly, more than two centuries before the Spanish crown completed the Reconquest of the eastern portion by capturing Granada in 1492.Consolidation and Independence of Burgundian Portugal, 1140-1385Two main themes of Portugal's early existence as a monarchy are the consolidation of control over the realm and the defeat of a Castil-ian threat from the east to its independence. At the end of this period came the birth of a new royal dynasty (Aviz), which prepared to carry the Christian Reconquest beyond continental Portugal across the straits of Gibraltar to North Africa. There was a variety of motives behind these developments. Portugal's independent existence was imperiled by threats from neighboring Iberian kingdoms to the north and east. Politics were dominated not only by efforts against the Muslims inPortugal (until 1250) and in nearby southern Spain (until 1492), but also by internecine warfare among the kingdoms of Castile, Léon, Aragon, and Portugal. A final comeback of Muslim forces was defeated at the battle of Salado (1340) by allied Castilian and Portuguese forces. In the emerging Kingdom of Portugal, the monarch gradually gained power over and neutralized the nobility and the Church.The historic and commonplace Portuguese saying "From Spain, neither a good wind nor a good marriage" was literally played out in diplomacy and war in the late 14th-century struggles for mastery in the peninsula. Larger, more populous Castile was pitted against smaller Portugal. Castile's Juan I intended to force a union between Castile and Portugal during this era of confusion and conflict. In late 1383, Portugal's King Fernando, the last king of the Burgundian dynasty, suddenly died prematurely at age 38, and the Master of Aviz, Portugal's most powerful nobleman, took up the cause of independence and resistance against Castile's invasion. The Master of Aviz, who became King João I of Portugal, was able to obtain foreign assistance. With the aid of English archers, Joao's armies defeated the Castilians in the crucial battle of Aljubarrota, on 14 August 1385, a victory that assured the independence of the Portuguese monarchy from its Castilian nemesis for several centuries.Aviz Dynasty and Portugal's First Overseas Empire, 1385-1580The results of the victory at Aljubarrota, much celebrated in Portugal's art and monuments, and the rise of the Aviz dynasty also helped to establish a new merchant class in Lisbon and Oporto, Portugal's second city. This group supported King João I's program of carrying the Reconquest to North Africa, since it was interested in expanding Portugal's foreign commerce and tapping into Muslim trade routes and resources in Africa. With the Reconquest against the Muslims completed in Portugal and the threat from Castile thwarted for the moment, the Aviz dynasty launched an era of overseas conquest, exploration, and trade. These efforts dominated Portugal's 15th and 16th centuries.The overseas empire and age of Discoveries began with Portugal's bold conquest in 1415 of the Moroccan city of Ceuta. One royal member of the 1415 expedition was young, 21-year-old Prince Henry, later known in history as "Prince Henry the Navigator." His part in the capture of Ceuta won Henry his knighthood and began Portugal's "Marvelous Century," during which the small kingdom was counted as a European and world power of consequence. Henry was the son of King João I and his English queen, Philippa of Lancaster, but he did not inherit the throne. Instead, he spent most of his life and his fortune, and that of the wealthy military Order of Christ, on various imperial ventures and on voyages of exploration down the African coast and into the Atlantic. While mythology has surrounded Henry's controversial role in the Discoveries, and this role has been exaggerated, there is no doubt that he played a vital part in the initiation of Portugal's first overseas empire and in encouraging exploration. He was naturally curious, had a sense of mission for Portugal, and was a strong leader. He also had wealth to expend; at least a third of the African voyages of the time were under his sponsorship. If Prince Henry himself knew little science, significant scientific advances in navigation were made in his day.What were Portugal's motives for this new imperial effort? The well-worn historical cliche of "God, Glory, and Gold" can only partly explain the motivation of a small kingdom with few natural resources and barely 1 million people, which was greatly outnumbered by the other powers it confronted. Among Portuguese objectives were the desire to exploit known North African trade routes and resources (gold, wheat, leather, weaponry, and other goods that were scarce in Iberia); the need to outflank the Muslim world in the Mediterranean by sailing around Africa, attacking Muslims en route; and the wish to ally with Christian kingdoms beyond Africa. This enterprise also involved a strategy of breaking the Venetian spice monopoly by trading directly with the East by means of discovering and exploiting a sea route around Africa to Asia. Besides the commercial motives, Portugal nurtured a strong crusading sense of Christian mission, and various classes in the kingdom saw an opportunity for fame and gain.By the time of Prince Henry's death in 1460, Portugal had gained control of the Atlantic archipelagos of the Azores and Madeiras, begun to colonize the Cape Verde Islands, failed to conquer the Canary Islands from Castile, captured various cities on Morocco's coast, and explored as far as Senegal, West Africa, down the African coast. By 1488, Bar-tolomeu Dias had rounded the Cape of Good Hope in South Africa and thereby discovered the way to the Indian Ocean.Portugal's largely coastal African empire and later its fragile Asian empire brought unexpected wealth but were purchased at a high price. Costs included wars of conquest and defense against rival powers, manning the far-flung navel and trade fleets and scattered castle-fortresses, and staffing its small but fierce armies, all of which entailed a loss of skills and population to maintain a scattered empire. Always short of capital, the monarchy became indebted to bankers. There were many defeats beginning in the 16th century at the hands of the larger imperial European monarchies (Spain, France, England, and Holland) and many attacks on Portugal and its strung-out empire. Typically, there was also the conflict that arose when a tenuously held world empire that rarely if ever paid its way demanded finance and manpower Portugal itself lacked.The first 80 years of the glorious imperial era, the golden age of Portugal's imperial power and world influence, was an African phase. During 1415-88, Portuguese navigators and explorers in small ships, some of them caravelas (caravels), explored the treacherous, disease-ridden coasts of Africa from Morocco to South Africa beyond the Cape of Good Hope. By the 1470s, the Portuguese had reached the Gulf of Guinea and, in the early 1480s, what is now Angola. Bartolomeu Dias's extraordinary voyage of 1487-88 to South Africa's coast and the edge of the Indian Ocean convinced Portugal that the best route to Asia's spices and Christians lay south, around the tip of southern Africa. Between 1488 and 1495, there was a hiatus caused in part by domestic conflict in Portugal, discussion of resources available for further conquests beyond Africa in Asia, and serious questions as to Portugal's capacity to reach beyond Africa. In 1495, King Manuel and his council decided to strike for Asia, whatever the consequences. In 1497-99, Vasco da Gama, under royal orders, made the epic two-year voyage that discovered the sea route to western India (Asia), outflanked Islam and Venice, and began Portugal's Asian empire. Within 50 years, Portugal had discovered and begun the exploitation of its largest colony, Brazil, and set up forts and trading posts from the Middle East (Aden and Ormuz), India (Calicut, Goa, etc.), Malacca, and Indonesia to Macau in China.By the 1550s, parts of its largely coastal, maritime trading post empire from Morocco to the Moluccas were under siege from various hostile forces, including Muslims, Christians, and Hindi. Although Moroccan forces expelled the Portuguese from the major coastal cities by 1550, the rival European monarchies of Castile (Spain), England, France, and later Holland began to seize portions of her undermanned, outgunned maritime empire.In 1580, Phillip II of Spain, whose mother was a Portuguese princess and who had a strong claim to the Portuguese throne, invaded Portugal, claimed the throne, and assumed control over the realm and, by extension, its African, Asian, and American empires. Phillip II filled the power vacuum that appeared in Portugal following the loss of most of Portugal's army and its young, headstrong King Sebastião in a disastrous war in Morocco. Sebastiao's death in battle (1578) and the lack of a natural heir to succeed him, as well as the weak leadership of the cardinal who briefly assumed control in Lisbon, led to a crisis that Spain's strong monarch exploited. As a result, Portugal lost its independence to Spain for a period of 60 years.Portugal under Spanish Rule, 1580-1640Despite the disastrous nature of Portugal's experience under Spanish rule, "The Babylonian Captivity" gave birth to modern Portuguese nationalism, its second overseas empire, and its modern alliance system with England. Although Spain allowed Portugal's weakened empire some autonomy, Spanish rule in Portugal became increasingly burdensome and unacceptable. Spain's ambitious imperial efforts in Europe and overseas had an impact on the Portuguese as Spain made greater and greater demands on its smaller neighbor for manpower and money. Portugal's culture underwent a controversial Castilianization, while its empire became hostage to Spain's fortunes. New rival powers England, France, and Holland attacked and took parts of Spain's empire and at the same time attacked Portugal's empire, as well as the mother country.Portugal's empire bore the consequences of being attacked by Spain's bitter enemies in what was a form of world war. Portuguese losses were heavy. By 1640, Portugal had lost most of its Moroccan cities as well as Ceylon, the Moluccas, and sections of India. With this, Portugal's Asian empire was gravely weakened. Only Goa, Damão, Diu, Bombay, Timor, and Macau remained and, in Brazil, Dutch forces occupied the northeast.On 1 December 1640, long commemorated as a national holiday, Portuguese rebels led by the duke of Braganza overthrew Spanish domination and took advantage of Spanish weakness following a more serious rebellion in Catalonia. Portugal regained independence from Spain, but at a price: dependence on foreign assistance to maintain its independence in the form of the renewal of the alliance with England.Restoration and Second Empire, 1640-1822Foreign affairs and empire dominated the restoration era and aftermath, and Portugal again briefly enjoyed greater European power and prestige. The Anglo-Portuguese Alliance was renewed and strengthened in treaties of 1642, 1654, and 1661, and Portugal's independence from Spain was underwritten by English pledges and armed assistance. In a Luso-Spanish treaty of 1668, Spain recognized Portugal's independence. Portugal's alliance with England was a marriage of convenience and necessity between two monarchies with important religious, cultural, and social differences. In return for legal, diplomatic, and trade privileges, as well as the use during war and peace of Portugal's great Lisbon harbor and colonial ports for England's navy, England pledged to protect Portugal and its scattered empire from any attack. The previously cited 17th-century alliance treaties were renewed later in the Treaty of Windsor, signed in London in 1899. On at least 10 different occasions after 1640, and during the next two centuries, England was central in helping prevent or repel foreign invasions of its ally, Portugal.Portugal's second empire (1640-1822) was largely Brazil-oriented. Portuguese colonization, exploitation of wealth, and emigration focused on Portuguese America, and imperial revenues came chiefly from Brazil. Between 1670 and 1740, Portugal's royalty and nobility grew wealthier on funds derived from Brazilian gold, diamonds, sugar, tobacco, and other crops, an enterprise supported by the Atlantic slave trade and the supply of African slave labor from West Africa and Angola. Visitors today can see where much of that wealth was invested: Portugal's rich legacy of monumental architecture. Meanwhile, the African slave trade took a toll in Angola and West Africa.In continental Portugal, absolutist monarchy dominated politics and government, and there was a struggle for position and power between the monarchy and other institutions, such as the Church and nobility. King José I's chief minister, usually known in history as the marquis of Pombal (ruled 1750-77), sharply suppressed the nobility and theChurch (including the Inquisition, now a weak institution) and expelled the Jesuits. Pombal also made an effort to reduce economic dependence on England, Portugal's oldest ally. But his successes did not last much beyond his disputed time in office.Beginning in the late 18th century, the European-wide impact of the French Revolution and the rise of Napoleon placed Portugal in a vulnerable position. With the monarchy ineffectively led by an insane queen (Maria I) and her indecisive regent son (João VI), Portugal again became the focus of foreign ambition and aggression. With England unable to provide decisive assistance in time, France—with Spain's consent—invaded Portugal in 1807. As Napoleon's army under General Junot entered Lisbon meeting no resistance, Portugal's royal family fled on a British fleet to Brazil, where it remained in exile until 1821. In the meantime, Portugal's overseas empire was again under threat. There was a power vacuum as the monarch was absent, foreign armies were present, and new political notions of liberalism and constitutional monarchy were exciting various groups of citizens.Again England came to the rescue, this time in the form of the armies of the duke of Wellington. Three successive French invasions of Portugal were defeated and expelled, and Wellington succeeded in carrying the war against Napoleon across the Portuguese frontier into Spain. The presence of the English army, the new French-born liberal ideas, and the political vacuum combined to create revolutionary conditions. The French invasions and the peninsular wars, where Portuguese armed forces played a key role, marked the beginning of a new era in politics.Liberalism and Constitutional Monarchy, 1822-1910During 1807-22, foreign invasions, war, and civil strife over conflicting political ideas gravely damaged Portugal's commerce, economy, and novice industry. The next terrible blow was the loss of Brazil in 1822, the jewel in the imperial crown. Portugal's very independence seemed to be at risk. In vain, Portugal sought to resist Brazilian independence by force, but in 1825 it formally acknowledged Brazilian independence by treaty.Portugal's slow recovery from the destructive French invasions and the "war of independence" was complicated by civil strife over the form of constitutional monarchy that best suited Portugal. After struggles over these issues between 1820 and 1834, Portugal settled somewhat uncertainly into a moderate constitutional monarchy whose constitution (Charter of 1826) lent it strong political powers to exert a moderating influence between the executive and legislative branches of the government. It also featured a new upper middle class based on land ownership and commerce; a Catholic Church that, although still important, lived with reduced privileges and property; a largely African (third) empire to which Lisbon and Oporto devoted increasing spiritual and material resources, starting with the liberal imperial plans of 1836 and 1851, and continuing with the work of institutions like the Lisbon Society of Geography (established 1875); and a mass of rural peasants whose bonds to the land weakened after 1850 and who began to immigrate in increasing numbers to Brazil and North America.Chronic military intervention in national politics began in 19th-century Portugal. Such intervention, usually commencing with coups or pronunciamentos (military revolts), was a shortcut to the spoils of political office and could reflect popular discontent as well as the power of personalities. An early example of this was the 1817 golpe (coup) attempt of General Gomes Freire against British military rule in Portugal before the return of King João VI from Brazil. Except for a more stable period from 1851 to 1880, military intervention in politics, or the threat thereof, became a feature of the constitutional monarchy's political life, and it continued into the First Republic and the subsequent Estado Novo.Beginning with the Regeneration period (1851-80), Portugal experienced greater political stability and economic progress. Military intervention in politics virtually ceased; industrialization and construction of railroads, roads, and bridges proceeded; two political parties (Regenerators and Historicals) worked out a system of rotation in power; and leading intellectuals sparked a cultural revival in several fields. In 19th-century literature, there was a new golden age led by such figures as Alexandre Herculano (historian), Eça de Queirós (novelist), Almeida Garrett (playwright and essayist), Antero de Quental (poet), and Joaquim Oliveira Martins (historian and social scientist). In its third overseas empire, Portugal attempted to replace the slave trade and slavery with legitimate economic activities; to reform the administration; and to expand Portuguese holdings beyond coastal footholds deep into the African hinterlands in West, West Central, and East Africa. After 1841, to some extent, and especially after 1870, colonial affairs, combined with intense nationalism, pressures for economic profit in Africa, sentiment for national revival, and the drift of European affairs would make or break Lisbon governments.Beginning with the political crisis that arose out of the "English Ultimatum" affair of January 1890, the monarchy became discredtted and identified with the poorly functioning government, political parties splintered, and republicanism found more supporters. Portugal participated in the "Scramble for Africa," expanding its African holdings, but failed to annex territory connecting Angola and Mozambique. A growing foreign debt and state bankruptcy as of the early 1890s damaged the constitutional monarchy's reputation, despite the efforts of King Carlos in diplomacy, the renewal of the alliance in the Windsor Treaty of 1899, and the successful if bloody colonial wars in the empire (1880-97). Republicanism proclaimed that Portugal's weak economy and poor society were due to two historic institutions: the monarchy and the Catholic Church. A republic, its stalwarts claimed, would bring greater individual liberty; efficient, if more decentralized government; and a stronger colonial program while stripping the Church of its role in both society and education.As the monarchy lost support and republicans became more aggressive, violence increased in politics. King Carlos I and his heir Luís were murdered in Lisbon by anarchist-republicans on 1 February 1908. Following a military and civil insurrection and fighting between monarchist and republican forces, on 5 October 1910, King Manuel II fled Portugal and a republic was proclaimed.First Parliamentary Republic, 1910-26Portugal's first attempt at republican government was the most unstable, turbulent parliamentary republic in the history of 20th-century Western Europe. During a little under 16 years of the republic, there were 45 governments, a number of legislatures that did not complete normal terms, military coups, and only one president who completed his four-year term in office. Portuguese society was poorly prepared for this political experiment. Among the deadly legacies of the monarchy were a huge public debt; a largely rural, apolitical, and illiterate peasant population; conflict over the causes of the country's misfortunes; and lack of experience with a pluralist, democratic system.The republic had some talented leadership but lacked popular, institutional, and economic support. The 1911 republican constitution established only a limited democracy, as only a small portion of the adult male citizenry was eligible to vote. In a country where the majority was Catholic, the republic passed harshly anticlerical laws, and its institutions and supporters persecuted both the Church and its adherents. During its brief disjointed life, the First Republic drafted important reform plans in economic, social, and educational affairs; actively promoted development in the empire; and pursued a liberal, generous foreign policy. Following British requests for Portugal's assistance in World War I, Portugal entered the war on the Allied side in March 1916 and sent armies to Flanders and Portuguese Africa. Portugal's intervention in that conflict, however, was too costly in many respects, and the ultimate failure of the republic in part may be ascribed to Portugal's World War I activities.Unfortunately for the republic, its time coincided with new threats to Portugal's African possessions: World War I, social and political demands from various classes that could not be reconciled, excessive military intervention in politics, and, in particular, the worst economic and financial crisis Portugal had experienced since the 16th and 17th centuries. After the original Portuguese Republican Party (PRP, also known as the "Democrats") splintered into three warring groups in 1912, no true multiparty system emerged. The Democrats, except for only one or two elections, held an iron monopoly of electoral power, and political corruption became a major issue. As extreme right-wing dictatorships elsewhere in Europe began to take power in Italy (1922), neighboring Spain (1923), and Greece (1925), what scant popular support remained for the republic collapsed. Backed by a right-wing coalition of landowners from Alentejo, clergy, Coimbra University faculty and students, Catholic organizations, and big business, career military officers led by General Gomes da Costa executed a coup on 28 May 1926, turned out the last republican government, and established a military government.The Estado Novo (New State), 1926-74During the military phase (1926-32) of the Estado Novo, professional military officers, largely from the army, governed and administered Portugal and held key cabinet posts, but soon discovered that the military possessed no magic formula that could readily solve the problems inherited from the First Republic. Especially during the years 1926-31, the military dictatorship, even with its political repression of republican activities and institutions (military censorship of the press, political police action, and closure of the republic's rowdy parliament), was characterized by similar weaknesses: personalism and factionalism; military coups and political instability, including civil strife and loss of life; state debt and bankruptcy; and a weak economy. "Barracks parliamentarism" was not an acceptable alternative even to the "Nightmare Republic."Led by General Óscar Carmona, who had replaced and sent into exile General Gomes da Costa, the military dictatorship turned to a civilian expert in finance and economics to break the budget impasse and bring coherence to the disorganized system. Appointed minister of finance on 27 April 1928, the Coimbra University Law School professor of economics Antônio de Oliveira Salazar (1889-1970) first reformed finance, helped balance the budget, and then turned to other concerns as he garnered extraordinary governing powers. In 1930, he was appointed interim head of another key ministry (Colonies) and within a few years had become, in effect, a civilian dictator who, with the military hierarchy's support, provided the government with coherence, a program, and a set of policies.For nearly 40 years after he was appointed the first civilian prime minister in 1932, Salazar's personality dominated the government. Unlike extreme right-wing dictators elsewhere in Europe, Salazar was directly appointed by the army but was never endorsed by a popular political party, street militia, or voter base. The scholarly, reclusive former Coimbra University professor built up what became known after 1932 as the Estado Novo ("New State"), which at the time of its overthrow by another military coup in 1974, was the longest surviving authoritarian regime in Western Europe. The system of Salazar and the largely academic and technocratic ruling group he gathered in his cabinets was based on the central bureaucracy of the state, which was supported by the president of the republic—always a senior career military officer, General Óscar Carmona (1928-51), General Craveiro Lopes (1951-58), and Admiral Américo Tómaz (1958-74)—and the complicity of various institutions. These included a rubber-stamp legislature called the National Assembly (1935-74) and a political police known under various names: PVDE (1932-45), PIDE (1945-69),and DGS (1969-74). Other defenders of the Estado Novo security were paramilitary organizations such as the National Republican Guard (GNR); the Portuguese Legion (PL); and the Portuguese Youth [Movement]. In addition to censorship of the media, theater, and books, there was political repression and a deliberate policy of depoliticization. All political parties except for the approved movement of regime loyalists, the União Nacional or (National Union), were banned.The most vigorous and more popular period of the New State was 1932-44, when the basic structures were established. Never monolithic or entirely the work of one person (Salazar), the New State was constructed with the assistance of several dozen top associates who were mainly academics from law schools, some technocrats with specialized skills, and a handful of trusted career military officers. The 1933 Constitution declared Portugal to be a "unitary, corporative Republic," and pressures to restore the monarchy were resisted. Although some of the regime's followers were fascists and pseudofascists, many more were conservative Catholics, integralists, nationalists, and monarchists of different varieties, and even some reactionary republicans. If the New State was authoritarian, it was not totalitarian and, unlike fascism in Benito Mussolini's Italy or Adolf Hitler's Germany, it usually employed the minimum of violence necessary to defeat what remained a largely fractious, incoherent opposition.With the tumultuous Second Republic and the subsequent civil war in nearby Spain, the regime felt threatened and reinforced its defenses. During what Salazar rightly perceived as a time of foreign policy crisis for Portugal (1936-45), he assumed control of the Ministry of Foreign Affairs. From there, he pursued four basic foreign policy objectives: supporting the Nationalist rebels of General Francisco Franco in the Spanish Civil War (1936-39) and concluding defense treaties with a triumphant Franco; ensuring that General Franco in an exhausted Spain did not enter World War II on the Axis side; maintaining Portuguese neutrality in World War II with a post-1942 tilt toward the Allies, including granting Britain and the United States use of bases in the Azores Islands; and preserving and protecting Portugal's Atlantic Islands and its extensive, if poor, overseas empire in Africa and Asia.During the middle years of the New State (1944-58), many key Salazar associates in government either died or resigned, and there was greater social unrest in the form of unprecedented strikes and clandestine Communist activities, intensified opposition, and new threatening international pressures on Portugal's overseas empire. During the earlier phase of the Cold War (1947-60), Portugal became a steadfast, if weak, member of the US-dominated North Atlantic Treaty Organization alliance and, in 1955, with American support, Portugal joined the United Nations (UN). Colonial affairs remained a central concern of the regime. As of 1939, Portugal was the third largest colonial power in the world and possessed territories in tropical Africa (Angola, Mozambique, Guinea-Bissau, and São Tomé and Príncipe Islands) and the remnants of its 16th-century empire in Asia (Goa, Damão, Diu, East Timor, and Macau). Beginning in the early 1950s, following the independence of India in 1947, Portugal resisted Indian pressures to decolonize Portuguese India and used police forces to discourage internal opposition in its Asian and African colonies.The later years of the New State (1958-68) witnessed the aging of the increasingly isolated but feared Salazar and new threats both at home and overseas. Although the regime easily overcame the brief oppositionist threat from rival presidential candidate General Humberto Delgado in the spring of 1958, new developments in the African and Asian empires imperiled the authoritarian system. In February 1961, oppositionists hijacked the Portuguese ocean liner Santa Maria and, in following weeks, African insurgents in northern Angola, although they failed to expel the Portuguese, gained worldwide media attention, discredited the New State, and began the 13-year colonial war. After thwarting a dissident military coup against his continued leadership, Salazar and his ruling group mobilized military repression in Angola and attempted to develop the African colonies at a faster pace in order to ensure Portuguese control. Meanwhile, the other European colonial powers (Britain, France, Belgium, and Spain) rapidly granted political independence to their African territories.At the time of Salazar's removal from power in September 1968, following a stroke, Portugal's efforts to maintain control over its colonies appeared to be successful. President Americo Tomás appointed Dr. Marcello Caetano as Salazar's successor as prime minister. While maintaining the New State's basic structures, and continuing the regime's essential colonial policy, Caetano attempted wider reforms in colonial administration and some devolution of power from Lisbon, as well as more freedom of expression in Lisbon. Still, a great deal of the budget was devoted to supporting the wars against the insurgencies in Africa. Meanwhile in Asia, Portuguese India had fallen when the Indian army invaded in December 1961. The loss of Goa was a psychological blow to the leadership of the New State, and of the Asian empire only East Timor and Macau remained.The Caetano years (1968-74) were but a hiatus between the waning Salazar era and a new regime. There was greater political freedom and rapid economic growth (5-6 percent annually to late 1973), but Caetano's government was unable to reform the old system thoroughly and refused to consider new methods either at home or in the empire. In the end, regime change came from junior officers of the professional military who organized the Armed Forces Movement (MFA) against the Caetano government. It was this group of several hundred officers, mainly in the army and navy, which engineered a largely bloodless coup in Lisbon on 25 April 1974. Their unexpected action brought down the 48-year-old New State and made possible the eventual establishment and consolidation of democratic governance in Portugal, as well as a reorientation of the country away from the Atlantic toward Europe.Revolution of Carnations, 1974-76Following successful military operations of the Armed Forces Movement against the Caetano government, Portugal experienced what became known as the "Revolution of Carnations." It so happened that during the rainy week of the military golpe, Lisbon flower shops were featuring carnations, and the revolutionaries and their supporters adopted the red carnation as the common symbol of the event, as well as of the new freedom from dictatorship. The MFA, whose leaders at first were mostly little-known majors and captains, proclaimed a three-fold program of change for the new Portugal: democracy; decolonization of the overseas empire, after ending the colonial wars; and developing a backward economy in the spirit of opportunity and equality. During the first 24 months after the coup, there was civil strife, some anarchy, and a power struggle. With the passing of the Estado Novo, public euphoria burst forth as the new provisional military government proclaimed the freedoms of speech, press, and assembly, and abolished censorship, the political police, the Portuguese Legion, Portuguese Youth, and other New State organizations, including the National Union. Scores of political parties were born and joined the senior political party, the Portuguese Community Party (PCP), and the Socialist Party (PS), founded shortly before the coup.Portugal's Revolution of Carnations went through several phases. There was an attempt to take control by radical leftists, including the PCP and its allies. This was thwarted by moderate officers in the army, as well as by the efforts of two political parties: the PS and the Social Democrats (PPD, later PSD). The first phase was from April to September 1974. Provisional president General Antonio Spínola, whose 1974 book Portugal and the Future had helped prepare public opinion for the coup, met irresistible leftist pressures. After Spinola's efforts to avoid rapid decolonization of the African empire failed, he resigned in September 1974. During the second phase, from September 1974 to March 1975, radical military officers gained control, but a coup attempt by General Spínola and his supporters in Lisbon in March 1975 failed and Spínola fled to Spain.In the third phase of the Revolution, March-November 1975, a strong leftist reaction followed. Farm workers occupied and "nationalized" 1.1 million hectares of farmland in the Alentejo province, and radical military officers in the provisional government ordered the nationalization of Portuguese banks (foreign banks were exempted), utilities, and major industries, or about 60 percent of the economic system. There were power struggles among various political parties — a total of 50 emerged—and in the streets there was civil strife among labor, military, and law enforcement groups. A constituent assembly, elected on 25 April 1975, in Portugal's first free elections since 1926, drafted a democratic constitution. The Council of the Revolution (CR), briefly a revolutionary military watchdog committee, was entrenched as part of the government under the constitution, until a later revision. During the chaotic year of 1975, about 30 persons were killed in political frays while unstable provisional governments came and went. On 25 November 1975, moderate military forces led by Colonel Ramalho Eanes, who later was twice elected president of the republic (1976 and 1981), defeated radical, leftist military groups' revolutionary conspiracies.In the meantime, Portugal's scattered overseas empire experienced a precipitous and unprepared decolonization. One by one, the former colonies were granted and accepted independence—Guinea-Bissau (September 1974), Cape Verde Islands (July 1975), and Mozambique (July 1975). Portugal offered to turn over Macau to the People's Republic of China, but the offer was refused then and later negotiations led to the establishment of a formal decolonization or hand-over date of 1999. But in two former colonies, the process of decolonization had tragic results.In Angola, decolonization negotiations were greatly complicated by the fact that there were three rival nationalist movements in a struggle for power. The January 1975 Alvor Agreement signed by Portugal and these three parties was not effectively implemented. A bloody civil war broke out in Angola in the spring of 1975 and, when Portuguese armed forces withdrew and declared that Angola was independent on 11 November 1975, the bloodshed only increased. Meanwhile, most of the white Portuguese settlers from Angola and Mozambique fled during the course of 1975. Together with African refugees, more than 600,000 of these retornados ("returned ones") went by ship and air to Portugal and thousands more to Namibia, South Africa, Brazil, Canada, and the United States.The second major decolonization disaster was in Portugal's colony of East Timor in the Indonesian archipelago. Portugal's capacity to supervise and control a peaceful transition to independence in this isolated, neglected colony was limited by the strength of giant Indonesia, distance from Lisbon, and Portugal's revolutionary disorder and inability to defend Timor. In early December 1975, before Portugal granted formal independence and as one party, FRETILIN, unilaterally declared East Timor's independence, Indonesia's armed forces invaded, conquered, and annexed East Timor. Indonesian occupation encountered East Timorese resistance, and a heavy loss of life followed. The East Timor question remained a contentious international issue in the UN, as well as in Lisbon and Jakarta, for more than 20 years following Indonesia's invasion and annexation of the former colony of Portugal. Major changes occurred, beginning in 1998, after Indonesia underwent a political revolution and allowed a referendum in East Timor to decide that territory's political future in August 1999. Most East Timorese chose independence, but Indonesian forces resisted that verdict untilUN intervention in September 1999. Following UN rule for several years, East Timor attained full independence on 20 May 2002.Consolidation of Democracy, 1976-2000After several free elections and record voter turnouts between 25 April 1975 and June 1976, civil war was averted and Portugal's second democratic republic began to stabilize. The MFA was dissolved, the military were returned to the barracks, and increasingly elected civilians took over the government of the country. The 1976 Constitution was revised several times beginning in 1982 and 1989, in order to reempha-size the principle of free enterprise in the economy while much of the large, nationalized sector was privatized. In June 1976, General Ram-alho Eanes was elected the first constitutional president of the republic (five-year term), and he appointed socialist leader Dr. Mário Soares as prime minister of the first constitutional government.From 1976 to 1985, Portugal's new system featured a weak economy and finances, labor unrest, and administrative and political instability. The difficult consolidation of democratic governance was eased in part by the strong currency and gold reserves inherited from the Estado Novo, but Lisbon seemed unable to cope with high unemployment, new debt, the complex impact of the refugees from Africa, world recession, and the agitation of political parties. Four major parties emerged from the maelstrom of 1974-75, except for the Communist Party, all newly founded. They were, from left to right, the Communists (PCP); the Socialists (PS), who managed to dominate governments and the legislature but not win a majority in the Assembly of the Republic; the Social Democrats (PSD); and the Christian Democrats (CDS). During this period, the annual growth rate was low (l-2 percent), and the nationalized sector of the economy stagnated.Enhanced economic growth, greater political stability, and more effective central government as of 1985, and especially 1987, were due to several developments. In 1977, Portugal applied for membership in the European Economic Community (EEC), now the European Union (EU) since 1993. In January 1986, with Spain, Portugal was granted membership, and economic and financial progress in the intervening years has been significantly influenced by the comparatively large investment, loans, technology, advice, and other assistance from the EEC. Low unemployment, high annual growth rates (5 percent), and moderate inflation have also been induced by the new political and administrative stability in Lisbon. Led by Prime Minister Cavaco Silva, an economist who was trained abroad, the PSD's strong organization, management, and electoral support since 1985 have assisted in encouraging economic recovery and development. In 1985, the PSD turned the PS out of office and won the general election, although they did not have an absolute majority of assembly seats. In 1986, Mário Soares was elected president of the republic, the first civilian to hold that office since the First Republic. In the elections of 1987 and 1991, however, the PSD was returned to power with clear majorities of over 50 percent of the vote.Although the PSD received 50.4 percent of the vote in the 1991 parliamentary elections and held a 42-seat majority in the Assembly of the Republic, the party began to lose public support following media revelations regarding corruption and complaints about Prime Minister Cavaco Silva's perceived arrogant leadership style. President Mário Soares voiced criticism of the PSD's seemingly untouchable majority and described a "tyranny of the majority." Economic growth slowed down. In the parliamentary elections of 1995 and the presidential election of 1996, the PSD's dominance ended for the time being. Prime Minister Antônio Guterres came to office when the PS won the October 1995 elections, and in the subsequent presidential contest, in January 1996, socialist Jorge Sampaio, the former mayor of Lisbon, was elected president of the republic, thus defeating Cavaco Silva's bid. Young and popular, Guterres moved the PS toward the center of the political spectrum. Under Guterres, the PS won the October 1999 parliamentary elections. The PS defeated the PSD but did not manage to win a clear, working majority of seats, and this made the PS dependent upon alliances with smaller parties, including the PCP.In the local elections in December 2001, the PSD's criticism of PS's heavy public spending allowed the PSD to take control of the key cities of Lisbon, Oporto, and Coimbra. Guterres resigned, and parliamentary elections were brought forward from 2004 to March 2002. The PSD won a narrow victory with 40 percent of the votes, and Jose Durão Barroso became prime minister. Having failed to win a majority of the seats in parliament forced the PSD to govern in coalition with the right-wing Popular Party (PP) led by Paulo Portas. Durão Barroso set about reducing government spending by cutting the budgets of local authorities, freezing civil service hiring, and reviving the economy by accelerating privatization of state-owned enterprises. These measures provoked a 24-hour strike by public-sector workers. Durão Barroso reacted with vows to press ahead with budget-cutting measures and imposed a wage freeze on all employees earning more than €1,000, which affected more than one-half of Portugal's work force.In June 2004, Durão Barroso was invited by Romano Prodi to succeed him as president of the European Commission. Durão Barroso accepted and resigned the prime ministership in July. Pedro Santana Lopes, the leader of the PSD, became prime minister. Already unpopular at the time of Durão Barroso's resignation, the PSD-led government became increasingly unpopular under Santana Lopes. A month-long delay in the start of the school year and confusion over his plan to cut taxes and raise public-sector salaries, eroded confidence even more. By November, Santana Lopes's government was so unpopular that President Jorge Sampaio was obliged to dissolve parliament and hold new elections, two years ahead of schedule.Parliamentary elections were held on 20 February 2005. The PS, which had promised the electorate disciplined and transparent governance, educational reform, the alleviation of poverty, and a boost in employment, won 45 percent of the vote and the majority of the seats in parliament. The leader of the PS, José Sôcrates became prime minister on 12 March 2005. In the regularly scheduled presidential elections held on 6 January 2006, the former leader of the PSD and prime minister, Aníbal Cavaco Silva, won a narrow victory and became president on 9 March 2006. With a mass protest, public teachers' strike, and street demonstrations in March 2008, Portugal's media, educational, and social systems experienced more severe pressures. With the spreading global recession beginning in September 2008, Portugal's economic and financial systems became more troubled.Owing to its geographic location on the southwestern most edge of continental Europe, Portugal has been historically in but not of Europe. Almost from the beginning of its existence in the 12th century as an independent monarchy, Portugal turned its back on Europe and oriented itself toward the Atlantic Ocean. After carving out a Christian kingdom on the western portion of the Iberian peninsula, Portuguese kings gradually built and maintained a vast seaborne global empire that became central to the way Portugal understood its individuality as a nation-state. While the creation of this empire allows Portugal to claim an unusual number of "firsts" or distinctions in world and Western history, it also retarded Portugal's economic, social, and political development. It can be reasonably argued that the Revolution of 25 April 1974 was the most decisive event in Portugal's long history because it finally ended Portugal's oceanic mission and view of itself as an imperial power. After the 1974 Revolution, Portugal turned away from its global mission and vigorously reoriented itself toward Europe. Contemporary Portugal is now both in and of Europe.The turn toward Europe began immediately after 25 April 1974. Portugal granted independence to its African colonies in 1975. It was admitted to the European Council and took the first steps toward accession to the European Economic Community (EEC) in 1976. On 28 March 1977, the Portuguese government officially applied for EEC membership. Because of Portugal's economic and social backwardness, which would require vast sums of EEC money to overcome, negotiations for membership were long and difficult. Finally, a treaty of accession was signed on 12 June 1985. Portugal officially joined the EEC (the European Union [EU] since 1993) on 1 January 1986. Since becoming a full-fledged member of the EU, Portugal has been steadily overcoming the economic and social underdevelopment caused by its imperial past and is becoming more like the rest of Europe.Membership in the EU has speeded up the structural transformation of Portugal's economy, which actually began during the Estado Novo. Investments made by the Estado Novo in Portugal's economy began to shift employment out of the agricultural sector, which, in 1950, accounted for 50 percent of Portugal's economically active population. Today, only 10 percent of the economically active population is employed in the agricultural sector (the highest among EU member states); 30 percent in the industrial sector (also the highest among EU member states); and 60 percent in the service sector (the lowest among EU member states). The economically active population numbers about 5,000,000 employed, 56 percent of whom are women. Women workers are the majority of the workforce in the agricultural and service sectors (the highest among the EU member states). The expansion of the service sector has been primarily in health care and education. Portugal has had the lowest unemployment rates among EU member states, with the overall rate never being more than 10 percent of the active population. Since joining the EU, the number of employers increased from 2.6 percent to 5.8 percent of the active population; self-employed from 16 to 19 percent; and employees from 65 to 70 percent. Twenty-six percent of the employers are women. Unemployment tends to hit younger workers in industry and transportation, women employed in domestic service, workers on short-term contracts, and poorly educated workers. Salaried workers earn only 63 percent of the EU average, and hourly workers only one-third to one-half of that earned by their EU counterparts. Despite having had the second highest growth of gross national product (GNP) per inhabitant (after Ireland) among EU member states, the above data suggest that while much has been accomplished in terms of modernizing the Portuguese economy, much remains to be done to bring Portugal's economy up to the level of the "average" EU member state.Membership in the EU has also speeded up changes in Portuguese society. Over the last 30 years, coastalization and urbanization have intensified. Fully 50 percent of Portuguese live in the coastal urban conurbations of Lisbon, Oporto, Braga, Aveiro, Coimbra, Viseu, Évora, and Faro. The Portuguese population is one of the oldest among EU member states (17.3 percent are 65 years of age or older) thanks to a considerable increase in life expectancy at birth (77.87 years for the total population, 74.6 years for men, 81.36 years for women) and one of the lowest birthrates (10.59 births/1,000) in Europe. Family size averages 2.8 persons per household, with the strict nuclear family (one or two generations) in which both parents work being typical. Common law marriages, cohabitating couples, and single-parent households are more and more common. The divorce rate has also increased. "Youth Culture" has developed. The young have their own meeting places, leisure-time activities, and nightlife (bars, clubs, and discos).All Portuguese citizens, whether they have contributed or not, have a right to an old-age pension, invalidity benefits, widowed persons' pension, as well as payments for disabilities, children, unemployment, and large families. There is a national minimum wage (€385 per month), which is low by EU standards. The rapid aging of Portugal's population has changed the ratio of contributors to pensioners to 1.7, the lowest in the EU. This has created deficits in Portugal's social security fund.The adult literacy rate is about 92 percent. Illiteracy is still found among the elderly. Although universal compulsory education up to grade 9 was achieved in 1980, only 21.2 percent of the population aged 25-64 had undergone secondary education, compared to an EU average of 65.7 percent. Portugal's higher education system currently consists of 14 state universities and 14 private universities, 15 state polytechnic institutions, one Catholic university, and one military academy. All in all, Portugal spends a greater percentage of its state budget on education than most EU member states. Despite this high level of expenditure, the troubled Portuguese education system does not perform well. Early leaving and repetition rates are among the highest among EU member states.After the Revolution of 25 April 1974, Portugal created a National Health Service, which today consists of 221 hospitals and 512 medical centers employing 33,751 doctors and 41,799 nurses. Like its education system, Portugal's medical system is inefficient. There are long waiting lists for appointments with specialists and for surgical procedures.Structural changes in Portugal's economy and society mean that social life in Portugal is not too different from that in other EU member states. A mass consumption society has been created. Televisions, telephones, refrigerators, cars, music equipment, mobile phones, and personal computers are commonplace. Sixty percent of Portuguese households possess at least one automobile, and 65 percent of Portuguese own their own home. Portuguese citizens are more aware of their legal rights than ever before. This has resulted in a trebling of the number of legal proceeding since 1960 and an eight-fold increase in the number of lawyers. In general, Portuguese society has become more permissive and secular; the Catholic Church and the armed forces are much less influential than in the past. Portugal's population is also much more culturally, religiously, and ethnically diverse, a consequence of the coming to Portugal of hundreds of thousands of immigrants, mainly from former African colonies.Portuguese are becoming more cosmopolitan and sophisticated through the impact of world media, the Internet, and the World Wide Web. A prime case in point came in the summer and early fall of 1999, with the extraordinary events in East Timor and the massive Portuguese popular responses. An internationally monitored referendum in East Timor, Portugal's former colony in the Indonesian archipelago and under Indonesian occupation from late 1975 to summer 1999, resulted in a vote of 78.5 percent for rejecting integration with Indonesia and for independence. When Indonesian prointegration gangs, aided by the Indonesian military, responded to the referendum with widespread brutality and threatened to reverse the verdict of the referendum, there was a spontaneous popular outpouring of protest in the cities and towns of Portugal. An avalanche of Portuguese e-mail fell on leaders and groups in the UN and in certain countries around the world as Portugal's diplomats, perhaps to compensate for the weak initial response to Indonesian armed aggression in 1975, called for the protection of East Timor as an independent state and for UN intervention to thwart Indonesian action. Using global communications networks, the Portuguese were able to mobilize UN and world public opinion against Indonesian actions and aided the eventual independence of East Timor on 20 May 2002.From the Revolution of 25 April 1974 until the 1990s, Portugal had a large number of political parties, one of the largest Communist parties in western Europe, frequent elections, and endemic cabinet instability. Since the 1990s, the number of political parties has been dramatically reduced and cabinet stability increased. Gradually, the Portuguese electorate has concentrated around two larger parties, the right-of-center Social Democrats (PSD) and the left-of-center Socialist (PS). In the 1980s, these two parties together garnered 65 percent of the vote and 70 percent of the seats in parliament. In 2005, these percentages had risen to 74 percent and 85 percent, respectively. In effect, Portugal is currently a two-party dominant system in which the two largest parties — PS and PSD—alternate in and out of power, not unlike the rotation of the two main political parties (the Regenerators and the Historicals) during the last decades (1850s to 1880s) of the liberal constitutional monarchy. As Portugal's democracy has consolidated, turnout rates for the eligible electorate have declined. In the 1970s, turnout was 85 percent. In Portugal's most recent parliamentary election (2005), turnout had fallen to 65 percent of the eligible electorate.Portugal has benefited greatly from membership in the EU, and whatever doubts remain about the price paid for membership, no Portuguese government in the near future can afford to sever this connection. The vast majority of Portuguese citizens see membership in the EU as a "good thing" and strongly believe that Portugal has benefited from membership. Only the Communist Party opposed membership because it reduces national sovereignty, serves the interests of capitalists not workers, and suffers from a democratic deficit. Despite the high level of support for the EU, Portuguese voters are increasingly not voting in elections for the European Parliament, however. Turnout for European Parliament elections fell from 40 percent of the eligible electorate in the 1999 elections to 38 percent in the 2004 elections.In sum, Portugal's turn toward Europe has done much to overcome its backwardness. However, despite the economic, social, and political progress made since 1986, Portugal has a long way to go before it can claim to be on a par with the level found even in Spain, much less the rest of western Europe. As Portugal struggles to move from underde-velopment, especially in the rural areas away from the coast, it must keep in mind the perils of too rapid modern development, which could damage two of its most precious assets: its scenery and environment. The growth and future prosperity of the economy will depend on the degree to which the government and the private sector will remain stewards of clean air, soil, water, and other finite resources on which the tourism industry depends and on which Portugal's world image as a unique place to visit rests. Currently, Portugal is investing heavily in renewable energy from solar, wind, and wave power in order to account for about 50 percent of its electricity needs by 2010. Portugal opened the world's largest solar power plant and the world's first commercial wave power farm in 2006.An American documentary film on Portugal produced in the 1970s described this little country as having "a Past in Search of a Future." In the years after the Revolution of 25 April 1974, it could be said that Portugal is now living in "a Present in Search of a Future." Increasingly, that future lies in Europe as an active and productive member of the EU. -
7 control
управление; регулирование; контроль; орган [рычаг] управления; руль; pl. система управления или регулирования; управлять; регулироватьback seat flight control — управление ЛА из задней кабины [с места заднего лётчика]; pl. дублирующие органы управления в задней кабине
be out of control — терять управление [управляемость]; выходить из-под управления [контроля]
continuously variable thrust control — плавное [бесступенчатое] регулирование тяги
control c.g. control — регулирование центровки (ЛА)
control of missile attitude — стабилизация ракеты; управление пространственным положением ракеты
control of the air — превосходство или господство в воздухе; превосходство в области авиации [в авиационной технике]; контроль воздушного пространства
control of the yoke — разг. управление штурвалом
control of thrust orientation — управление ориентированием [направлением вектора] тяги
flight deck lighting controls — органы управления [ручки регулировки] освещением кабины экипажа
fling the controls over — перебрасывать органы управления (в противоположную сторону),
flow control with altitude compensation — регулятор расхода [подачи] с высотным корректором
fuel dump valve control — кран [рычаг крана] аварийного слива топлива
gas jet attitude control — управление пространственным положением с помощью системы газоструйных рулей
go out of control — терять управление, выходить из-под управления [контроля]
ground rollout rudder steering control — управление пробегом [на пробеге] с помощью руля направления
interconnected fuel and propeller controls — объединённая система регулирования подачи топлива и шага винта
jet tab thrust vector control — управление вектором тяги с помощью газовых рулей; дефлекторное управление вектором тяги
jet(-deflection, -direction) control — реактивное [струйное] управление; управление изменением направления тяги; струйный руль
manual mixture shut-off control — рычаг отсечки подачи горючей смеси, рычаг останова [выключения] двигателя
maximum boundary layer control — управление пограничным слоем при наибольшей эффективности [производительности, интенсивности работы] системы
recover the control — восстанавливать управление [управляемость]
respond to the controls — реагировать [отвечать] на отклонение рулей [органов управления]
space shuttle orbiter control — управление орбитальной ступенью челночного воздушно-космического аппарата
throttle and collective pitch control — верт. рычаг «шаг — газ»
-
8 flight
полет; рейс; перелёт; звено; летательный аппарат ( в полете) ; ркт. стартовый комплекс; лётный; полётный; бортовой1g flight — прямолинейный горизонтальный полет, полет с единичной перегрузкой, полет без ускорения или торможения
45° climbing inverted flight — набор высоты под углом 45° в перевёрнутом положении
45° climbing knife flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° diving knife flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
45° sliding flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° sliding flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
90° climbing flight — вертикальный подъём, отвесный набор высоты
break up in flight — разрушаться в воздухе [в полете]
Doppler hold hovering flight — полет на висении со стабилизацией по доплеровскому измерителю скорости сноса
flight at the controls — полет за рычагами управления (в качестве лётчика, пилотирующего самолёт)
flight on the deck — бреющий полет, полет на предельно малой высоте
— q flight -
9 speed
скорость; число оборотов; ускорятьat a speed of Mach 3 — при скорости, соответствующей числу М=3
best (cost) cruising speed — наивыгоднейшая [экономическая] крейсерская скорость полёта
clean (configuration) stall speed — скорость срыва [сваливания] при убранных механизации и шасси
engine-out discontinued approach speed — скорость ухода на второй круг с минимальной высоты при одном неработающем двигателе
flap(-down, -extended) speed — скорость полёта с выпущенными [отклонёнными] закрылками
forward с.g. stalling speed — скорость срыва [сваливания] при передней центровке
hold the speed down — уменьшать [гасить] скорость
minimum single-engine control speed — минимальная эволютивная скорость полёта с одним (работающим) двигателем (из двух)
minimum speedln a stall — минимальная скорость срыва [сваливания]
one-engine-inoperative power-on stalling speed — скорость срыва [сваливания] при одном отказавшем двигателе
rearward с.g. stalling speed — скорость срыва [сваливания] при задней центровке
representative cruising air speed — типовая крейсерская воздушная скорость, скорость полёта на типичном крейсерском режиме
speed over the top — скорость в верхней точке (траектории, маневра)
zero rate of climb speed — скорость полёта при нулевой скороподъёмности [вертикальной скорости]
— speed up -
10 current
1) течение; поток4) вчт. текущая запись•-
absorption current
- ac anode current -
action current
-
active current
-
actuating current
-
admissible continuous current
-
air current
-
alongshore current
-
alternate current
-
anode current
-
arbitrary noise current
-
arc current
-
arc-back current
-
arcing ground fault current
-
armature current
-
ascending current
-
audio-frequency current
-
avalanche current
-
back current
-
back short circuit current
-
backward current
-
barogradient current
-
base current
-
beam current
-
bearing currents
-
beating current
-
beat current
-
biasing current
-
bias current
-
biphase current
-
bleeder current
-
blind current
-
blowing current
-
body current
-
bottom current
-
boundary current
-
braking current
-
branch current
-
break induced current
-
breakaway starting current
-
breakdown current
-
breaking current
-
bucking current
-
bulk current
-
bypass current
-
capacitance current
-
capacitive current
-
capacity current
-
carrier current
-
cathode current
-
channel current
-
charging current
-
circulating current
-
circumpolar current
-
collector current
-
complex sinusoidal current
-
complex current
-
conduction current
-
conjugate complex sinusoidal current
-
conjugate complex current
-
constant current
-
consumption current
-
continuous current
-
continuous traction current
-
control current
-
convection current
-
core-loss current
-
creeping current
-
critical current
-
cross current
-
crystal current
-
current of realm
-
current of run-unit
-
current of set
-
cutoff current
-
damped alternating current
-
damped current
-
dark current
-
deep-water current
-
deep current
-
delta currents
-
density current
-
descending current
-
design current
-
dielectric absorption current
-
dielectric current
-
diffusion current
-
direct current
-
direct-axis current
-
discharge current
-
discontinuous current
-
displacement current
-
downward current
-
drift current
-
drive current
-
drop-away current
-
earth current
-
earth fault current
-
eddy currents
-
effective current
-
electric current
-
electrode current
-
electrolysis current
-
electron current
-
electron-beam induced current
-
emission current
-
emitter current
-
equalizing current
-
equivalent input noise current
-
excess current
-
exchange current
-
excitation current
-
external current
-
extra current
-
extraction current
-
extraneous current
-
feedback current
-
field current
-
filament current
-
firing current
-
flood current
-
fluctuating current
-
focusing-coil current
-
focus current
-
fold back current
-
follow current
-
forced alternating current
-
forced current
-
foreign currents
-
forward current
-
Foucault currents
-
free alternating current
-
free current
-
full-load current
-
fusing current
-
galvanic current
-
gas current
-
gate current
-
gate nontrigger current
-
gate trigger current
-
gate turnoff current
-
generation-recombination current
-
gradient current
-
grib current
-
ground current
-
ground-return current
-
harmonic current
-
heat current
-
heater current
-
high-frequency current
-
high-level input current
-
high-level output current
-
holding current
-
hold current
-
hold-on current
-
hole current
-
idle current
-
image current
-
impressed current
-
incident current
-
induced current
-
initial current
-
injection current
-
inphase current
-
input current
-
input leakage current
-
input offset current
-
inrush current
-
inshore current
-
instantaneous carrying current
-
instantaneous current
-
insulation current
-
interference current
-
intermittent current
-
inverse current
-
ion production current
-
ionic current
-
ion current
-
ionization current
-
irradiation-saturation current
-
lagging current
-
latching current
-
leading current
-
leakage current
-
let-go current
-
light current
-
lightning current
-
line charging current
-
linear current
-
load current
-
locked-rotor current
-
loop current
-
loss current
-
low-level input current
-
low-level output current
-
magnetization current
-
majority-carrier current
-
majority current
-
make induced current
-
make-and-brake current
-
making current
-
maximum power current
-
minority-carrier current
-
minority current
-
motor inrush current
-
nearshore current
-
near-surface current
-
net current
-
neutral current
-
neutron current
-
neutron diffusion current
-
noise current
-
no-load current
-
nonsinusoidal current
-
nontrigger current
-
non-turn-off
-
offset current
-
offshore current
-
off-state current
-
on-state current
-
open-circuit current
-
operating current
-
output current
-
overload current
-
parasitic current
-
peak arc current
-
peak current
-
peak switching current
-
peak withstand current
-
peak-point current
-
peak-to-peak current
-
perception current
-
periodic current
-
persistent current
-
phase current
-
phase-fault current
-
phasor current
-
photo-electric current
-
photo current
-
photo-generated current
-
photo-induced current
-
pickup current
-
piezoelectric current
-
pinch current
-
plasma current
-
polarization current
-
polyphase current
-
postarc current
-
power current
-
power follow current
-
prebreakdown current
-
preconduction current
-
primary current
-
principal current
-
probe current
-
pull-in current
-
pulsating current
-
pulse current
-
pyroelectric current
-
quadrature-axis current
-
quiescent current
-
rated current
-
rated temperature-rise current
-
reactive current
-
read current
-
recombination current
-
rectified current
-
reflected current
-
regulated current
-
relative short-circuit current
-
release current
-
residual current
-
rest current
-
return current
-
reverse current
-
reverse-biased current
-
reverse-induced current
-
RF current
-
ringing current
-
rip current
-
ripple current
-
root-mean-square current
-
running current
-
rupturing current
-
saturated drain current
-
saturation current
-
saw-tooth current
-
secondary current
-
secondary-electron emission current
-
shaft currents
-
sheath current
-
shelf current
-
shield current
-
shock current
-
short-circuit current
-
short-noise current
-
short-time thermal current
-
short-time withstand current
-
sine-wave current
-
single-phase current
-
sinusoidal current
-
slope current
-
sneak current
-
spindle-motor current
-
split current
-
stalled-motor current
-
standby current
-
standing current
-
star currents
-
starter current
-
steady leakage current
-
steady surface current
-
steady volume current
-
steady-state current
-
stray current
-
stroke current
-
subsurface current
-
subsynchronous frequency current
-
subsynchronous current
-
subtransient armature current
-
superconduction current
-
superimposed current
-
supply current
-
surface current
-
surface-leakage current
-
surge current
-
suspension current
-
sustained current
-
sustaining current
-
switched current
-
switching current
-
symmetrical alternate current
-
synchronizing current
-
telluric current
-
test current
-
thermal current
-
thermal noise current
-
thermionic current
-
thermostimulated current
-
three-phase current
-
threshold current
-
through current
-
tidal current
-
tolerance current
-
traction current
-
traffic current
-
transfer current
-
transient current
-
transient-decay current
-
transmission-line current
-
trigger current
-
turbidity current
-
turnoff current
-
turn-on current
-
two-phase current
-
undulating current
-
unidirectional current
-
unsymmetrical currents
-
upward current
-
valley point current
-
variable current
-
vector current
-
virtual current
-
voice-frequency current
-
voltaic current
-
wattful current
-
wattless current
-
welding current
-
whirling currents
-
wind current
-
withdrawal current
-
working current
-
work current
-
Zener current
-
zero-sequence current -
11 voltage
1) напряжение, разность потенциалов2) потенциал3) электродвижущая сила, эдс•voltage across smth — напряжение на чем-л.;voltage applied to smth — напряжение, приложенное к чему-л.;voltage between phases — междуфазное [линейное\] напряжение;voltage to earth [to ground\] — напряжение относительно земли;to handle voltage — выдерживать напряжение;-
ac voltage
-
accelerating voltage
-
active component voltage
-
active voltage
-
actuating voltage
-
adjusting voltage
-
aging voltage
-
allowable voltage
-
alternating voltage
-
alternator field voltage
-
anode voltage
-
applied voltage
-
arc voltage
-
arc-drop voltage
-
arcing voltage
-
arc-stream voltage
-
average voltage
-
back voltage
-
background ionization voltage
-
backward voltage
-
balanced voltage
-
balancing voltage
-
bandgap voltage
-
barrier voltage
-
bar-to-bar voltage
-
base voltage
-
battery voltage
-
bias voltage
-
bidirectional voltage
-
black-out voltage
-
blanking voltage
-
blocking voltage
-
branch voltage
-
breakdown voltage
-
breakover voltage
-
bridge supply voltage
-
bucking voltage
-
built-in voltage
-
burning voltage
-
burnout voltage
-
bus voltage
-
calibration voltage
-
capacitor voltage
-
carrier voltage
-
category voltage
-
catenary voltage
-
cathode voltage
-
ceiling voltage
-
cell voltage
-
charge voltage
-
circuit voltage
-
clamp voltage
-
clock voltage
-
closed-circuit voltage
-
commercial-frequency voltage
-
commercial-frequency withstand voltage
-
common-mode voltage
-
commutating voltage
-
commutator voltage
-
compensating voltage
-
complex voltage
-
component voltage
-
constant voltage
-
contact voltage
-
control voltage
-
convergence voltage
-
corona voltage
-
corona-onset voltage
-
counter voltage
-
crest voltage
-
critical corona voltage
-
critical visual corona voltage
-
critical voltage
-
current-noise voltage
-
current-resistance voltage
-
cutoff voltage
-
cycling voltage
-
dc recovery voltage
-
dc voltage
-
decelerating voltage
-
decomposition voltage
-
deflecting voltage
-
delta voltage
-
design voltage
-
dielectric breakdown voltage
-
direct voltage
-
direct-axis component voltage behind transient reactance
-
direct-axis subtransient internal voltage
-
direct-axis subtransient voltage
-
direct-axis synchronous internal voltage
-
direct-axis synchronous voltage
-
direct-axis transient internal voltage
-
direct-axis transient voltage
-
discharge extinction voltage
-
discharge inception voltage
-
discharge ionization voltage
-
discharge voltage
-
disruptive discharge voltage
-
disruptive voltage
-
dissymmetrical voltage
-
disturbance voltage
-
driving voltage
-
drop-away voltage
-
dry withstand voltage
-
effective voltage
-
electric cell voltage
-
electrode voltage
-
end voltage
-
end-point voltage
-
equilibrium voltage
-
equivalent input noise voltage
-
error voltage
-
excess voltage
-
excitation voltage
-
exciter voltage
-
extinction voltage
-
extinguishing voltage
-
extrahigh voltage
-
Faraday voltage
-
fatal voltage
-
feedback voltage
-
field voltage
-
filament voltage
-
final acceleration voltage
-
final voltage
-
fire-back voltage
-
firing voltage
-
flash test voltage
-
flashover voltage
-
floating voltage
-
flyback voltage
-
focusing voltage
-
focus voltage
-
formation voltage
-
forward voltage
-
gas-discharge maintaining voltage
-
gate nontrigger voltage
-
gate trigger voltage
-
gate turn-off voltage
-
gate voltage
-
gating voltage
-
generated voltage
-
generator voltage
-
glow-discharge sustaining voltage
-
grid driving voltage
-
ground voltage
-
Hall voltage
-
heater voltage
-
high voltage
-
high-level voltage
-
ignition voltage
-
impedance voltage
-
impressed voltage
-
impulse testing voltage
-
impulse voltage
-
impulse withstand voltage
-
induced body voltage
-
induced voltage
-
inductance voltage
-
initial ionization voltage
-
initial voltage
-
injected voltage
-
in-phase voltage
-
input voltage
-
instantaneous voltage
-
interference voltage
-
internal voltage
-
inverse voltage
-
ionizing voltage
-
junction voltage
-
keep-alive voltage
-
lagging voltage
-
leading voltage
-
leakage reactance voltage
-
leakage voltage
-
lightning impulse flashover voltage
-
lightning impulse voltage
-
lightning impulse withstanding voltage
-
lightning induced voltage
-
limit voltage
-
limiting voltage
-
line voltage
-
linearity trim voltage
-
line-to-earth voltage
-
line-to-line voltage
-
loading voltage
-
load voltage
-
locked rotor voltage
-
locking voltage
-
logic threshold voltage
-
low voltage
-
low-level voltage
-
mains voltage
-
maintaining voltage
-
maximum operating voltage
-
maximum-power-point voltage
-
medium voltage
-
modulation voltage
-
negative phase-sequence voltage
-
negative sequence voltage
-
net voltage
-
neutral-to-ground voltage
-
nodal voltage
-
noise voltage
-
no-load field voltage
-
no-load voltage
-
nominal excitation ceiling voltage
-
nominal voltage
-
normal voltage
-
off-load voltage
-
offset voltage
-
off-standard voltage
-
off-state voltage
-
one-minute test voltage
-
one-minute withstand voltage
-
on-load voltage
-
on-state voltage
-
open-circuit secondary voltage
-
open-circuit voltage
-
operate voltage
-
operating supply voltage
-
operating voltage
-
out-of-phase voltage
-
output voltage
-
pace voltage
-
partial discharge extinction voltage
-
partial discharge inception voltage
-
peak arc voltage
-
peak reverse voltage
-
peak voltage
-
peak-point voltage
-
peak-to-peak ripple voltage
-
peak-to-peak voltage
-
per unit voltage
-
periodic voltage
-
permissible voltage
-
phase voltage
-
phase-to-ground voltage
-
phase-to-phase voltage
-
pickup voltage
-
pinch-off voltage
-
plate voltage
-
polarization voltage
-
positive-phase-sequence voltage
-
positive-sequence voltage
-
power-frequency voltage
-
preset voltage
-
presparkover voltage
-
primary voltage
-
probe voltage
-
protection voltage
-
psophometric voltage
-
pull-in voltage
-
pull-out voltage
-
pulsating voltage
-
pulse breakdown voltage
-
pulse noise voltage
-
punch-through voltage
-
puncture voltage
-
quadrature-axis component voltage behind transient reactance
-
quadrature-axis subtransient internal voltage
-
quadrature-axis subtransient voltage
-
quadrature-axis synchronous internal voltage
-
quadrature-axis synchronous voltage
-
quadrature-axis transient internal voltage
-
quadrature-axis transient voltage
-
quiescent input voltage
-
quiescent output voltage
-
radio interference voltage
-
rated impulse withstand voltage
-
rated temperature-rise voltage
-
rated voltage
-
reach-through voltage
-
reactance voltage
-
receiver voltage
-
receiving-end voltage
-
recovery voltage
-
rectified voltage
-
reduced voltage
-
reference voltage
-
reignition voltage
-
release voltage
-
repetitive voltage
-
residual voltage
-
resistance voltage
-
resonance voltage
-
response voltage
-
restoring voltage
-
restraining voltage
-
restriking voltage
-
reverse voltage
-
ring voltage
-
ring-to-ring voltage
-
ripple voltage
-
root-mean-square voltage
-
running voltage
-
safety extralow voltage
-
saturation voltage
-
sawtooth voltage
-
secondary voltage
-
self-induction voltage
-
sending-end voltage
-
sense voltage
-
service voltage
-
shift voltage
-
shock voltage
-
short-circuit voltage
-
shorting voltage
-
shot-noise voltage
-
signal voltage
-
sine-curve voltage
-
sine voltage
-
sine-wave voltage
-
sinusoidal voltage
-
slip-ring voltage
-
smoothed dc voltage
-
source voltage
-
spark-gap breakdown voltage
-
sparking voltage
-
sparkover voltage
-
speed-induced voltage
-
speed voltage
-
spot cutoff voltage
-
square-wave voltage
-
stabilized voltage
-
standard voltage
-
star voltage
-
starting voltage
-
static breakdown voltage
-
station auxiliaries voltage
-
steady-state voltage
-
step voltage
-
stray voltage
-
striking voltage
-
subtransient internal voltage
-
subtransient voltage
-
superimposed voltage
-
supply voltage
-
supply-line voltage
-
surge voltage
-
sustaining voltage
-
sweep voltage
-
swing voltage
-
switching surge voltage
-
switching voltage
-
symmetrical voltage
-
synchronous generator internal voltage
-
synchronous generator voltage
-
system voltage
-
tank voltage
-
tapping voltage
-
temperature voltage
-
terminal voltage
-
testing voltage
-
test voltage
-
thermal noise voltage
-
thermocouple voltage
-
thermoelectric voltage
-
threshold voltage
-
tooth voltage
-
touch voltage
-
transient internal voltage
-
transient recovery voltage
-
transient voltage
-
transmission-line voltage
-
trigger voltage
-
tuning voltage
-
turnoff voltage
-
ultor voltage
-
ultrahigh voltage
-
unbalanced voltage
-
unidirectional voltage
-
upper voltage
-
variable voltage
-
welding voltage
-
welding-arc voltage
-
wet switching surge withstand voltage
-
wet withstand voltage
-
withstanding voltage
-
withstand voltage
-
working voltage
-
Y-voltage
-
zener voltage
-
zero-phase-sequence voltage
-
zero-sequence voltage -
12 stall
срыв ( потока) ; срыв, сваливание ( самолёта) ; режим срыва [сваливания]; вводить или попадать в режим срыва [сваливания]; сваливаться ( о самолёте) ; останавливаться)full landing configuration stall — срыв [сваливание] в посадочной конфигурации 1-g stall срыв [сваливание] в горизонтальном прямолинейном полете (с единичной перегрузкой)
go into a stall — входить [попадать] в режим срыва [сваливания]
go out of stall — выходить из режима срыва [сваливания]
put an airplane into a stall — вводить самолёт в режим срыва [сваливания]
slow down to stall — гасить скорость до срыва [сваливания]
stall due to gusts — срыв [сваливание] вследствие воздействия воздушных порывов
stall in level flight — срыв [сваливание] в горизонтальном полете
stall in the clean configuration — срыв [сваливание] с убранными механизацией и шасси
stall in the takeoff configuration — срыв [сваливание] во взлетной конфигурации (шасси выпущено, закрылки отклонены на взлетный угол)
stall with full flaps — срыв [сваливание] при полностью отклонённых закрылках [с полностью выпущенными закрылками]
stall with no flaps — срыв [сваливание] при неотклонённых закрылках [с убранными закрылками]
stall with partial flaps — срыв [сваливание] при частично отклонённых закрылках [с частично выпущенными закрылками]
top and bottom rudder stall — срыв [сваливание] на вираже при смене (действия) рулей
-
13 altitude
высота; высота светила; угол места; разг. высотомер; высотныйfinal approach fix altitude — конечная высота определения места по радиомаякам при заходе на посадку
sacrifice altitude for airspeed — использовать запас высоты для разгона, терять высоту для достижения необходимой скорости
trade altitude for airspeed — использовать запас высоты для разгона, терять высоту для достижения необходимой скорости
-
14 approach
приближение, подход; сближение; заход на посадку; приближение к срыву [к сваливанию]; метод ( исследования) ; подходить, приближать(ся); заходить на посадку180-degree overhead — заход на посадку над ВПП с разворотом на 180° перед приземлением
360-degree overhead approach — заход на посадку с разворотом на 360° над ВПП (со снижением по спирали)
6-degree final approach — заход на посадку по глиссаде с углом 6° к горизонту
approach on the deck — разг. выход на цель на минимальной высоте
approach to the throat of a nozzle — суживающаяся [докритическая] часть сопла
automatic direction finder approach — заход на посадку с использованием автоматического радиокомпаса
fully coupled automatic approach — автоматический заход на посадку по сигналам курсоглиссадной системы
simulated engine-out missed approach — имитация ухода на второй круг с одним неработающим двигателем
very high-frequency omnirange approach — заход на посадку по системе ВОР [с использованием маяков системы ВОР]
-
15 adjustment
1) регулировка, настройка2) выверка3) коррекция•- closed-loop power adjustment
- coarse adjustment
- color purity adjustment
- continuous adjustment
- country adjustment
- discrete adjustment
- error-feedback adjustment
- feedback adjustment
- fine adjustment
- frequency adjustment
- gross adjustment
- head azimuth adjustment
- head height adjustment
- initial adjustment
- language adjustment
- on-line adjustment
- open loop power adjustment
- peak-power-output adjustment
- phase adjustment
- power-factor adjustment
- recording level adjustment
- sensitivity adjustment
- signal level adjustment
- spring adjustment
- storing adjustment
- vernier adjustment
- white adjustment
- wrap adjustment
- yoke adjustment
- zenith adjustment
- zero adjustmentEnglish-Russian dictionary of telecommunications and their abbreviations > adjustment
-
16 plant
1) установка; оборудование2) агрегат; механизм; энергоблок3) завод, фабрика, мастерская5) озеленять, сажать•plant and machinery register — реестр машин и оборудования (напр. строительной компании)
plant for technical ceramics and verified ceramics — установка для производства технической керамики и металлокерамики
plant for the preparation and transport of mastic asphalt — установка для подготовки и транспортировки литого асфальта
- activated sludge plant - aggregate batching plant - air-conditioning plant - air-supply plant - arc welding plant - asphalt plant - asphalt-mixing plant - asphalt preparation plant - asphalt-recycling plant - assembling plant - atomic power plant - automated concrete-mixing plant - automatic plant - batch plant - batch concrete mixing plant - batching plant - batch-weighing plant - biological treatment plant - bitumastic macadam mixing plant - bitumen-melting plant - bitumen-pumping plant - boiler plant - brick plant - facing brick plant - roof tile plant - brick-making plant - builder's plant - calcining plant - cement plant - central boiler plant - central mixing plant - chlorination plant - clarification plant - clay-drying plant - clay souring plant - coal grinding plant - coating plant - combined milling and burning plant - combined photovolcanic-deolian electric plant - compressor plant - concrete-mixing plant - concreting plant - construction plant - contractor's plant - crushing plant - crushing and screening plant - curing plants for the concrete block and precast concrete part industry - cutting plant - degreasing plant - desalination plant - diesel-engine power plant - disinfection plant - district heating plant - drying plant - earth freezing plant - earth-moving plant - effluent treatment plant - electric power plant - expanded clay plant - filter plant - final-screening plant - finish coat stacking and dry mixing mortar plant - fixed plant - flash-calcining plant - floating pile-driving plant - flotation plant - fuel-burning power plant - garbage-disposal plant - gas-fired plant - gravel plant - grinding wheel plant - grit-removal plant - heating plant - high head plant - hoisting plant - hydroelectric power plant - industrial plant - iron removal plant - light plant - lime-slaking plant - lime softening plant - loading plant - low head hydroelectric plant - manganese removal plant - milling plant - mixing plant - mixing plant and pavers for hydraulically bound base courses - mobile compressor plant - mobile concrete mixing plant - mobile crushing plant - mobile rock crushing and screening plant - mortar-mixing plant - multiple-arc welding plant - municipal sewage treatment plant - nuclear power plant - orbital power plant - ozone plant - ozone-ventilating plant - piling plant - pilot plant - placing plant - plaster plant - pontoon pile driving plant - portable compressor plant for painting work - power plant - primary treatment plant - proportioning plant - pump plant - pumping plant - pumped storage plant - purification plant - quarry plant - ready-mix plant - refrigerating plant - reverse osmosis plant - sand washing plant - sanitary ware plant - porcelain plant - secondary treatment plant - sedimentation plant - semi-mobile plant - semi-portable plant - sewage disposal plant - sewage pumping plant - sewage purification plant - sewage treatment plant - sintering plant - soil-mixing plant - solar plant - spraying plant - standby plant - steam plant - step-up plant - stoneware plant - tertiary plant - thermal power plant - tidal plant - tile-making plant - timber drying plant - tower-type concrete-mixing plant - transformer welding plant - travel plant - travelling mixing plant - treating plant - treatment plant - utility plant - vacuum-cleaning plant - vibration-rolled concrete plant - wall and floor tiles plant - washing plant - waste water treatment plant - water power plant - water softening plant - water treatment plantplant for the production of concrete polymer construction elements — установка для изготовления элементов из полимерного бетона
* * *1. оборудование инженерных систем здания2. строительное оборудование (напр. землеройное, подъёмно-транспортное, для бетонных работ)3. установка; агрегат; энергоблок; технологическая установка [система] ( в инженерных системах зданий)4. электростанция5. завод, фабрика; мастерская- acetylene producing plant
- activated sludge plant
- aeration plant
- aeration-degassing plant
- aggregate batching plant
- aggregate preparation plant
- air conditioning plant
- air handling plant
- air supply plant
- all-dry cement plant
- all-wet cement plant
- augering plant
- automatic batching plant
- bank-filtered river water plant
- barge-mounted concrete plant
- batch plant
- batch mixing plant
- biological treatment plant
- block-making plant
- block plant
- boiler plant
- booster pumping plant
- builder's plant
- builder's small powered plant
- cement plant
- central plant
- central air conditioning plant
- central air-handling plant
- central boiler plant
- central heating plant
- central refrigerating plant
- chemical feed plant
- chlorination plant
- civil-engineering plant
- coating plant
- cold-storage plant
- compressor plant
- computerized plant
- concentrating plant
- concrete plant
- concrete production plant
- concrete spouting plant
- concreting plant
- construction plant
- contact stabilization plant
- continuous-mix plant
- conveying plant
- cooling plant
- crushing plant
- desalination plant
- desalting plant
- disposal plant
- diversion power plant
- drying plant
- dust arrestor plant
- dust extracting plant
- earth moving plant
- electric plant
- exhaust plant
- extended aeration plant
- filter plant
- filtration plant
- floating concrete plant
- floating pile-driving plant
- flotation plant
- freezing plant
- gas plant
- gas-distribution plant
- gas washing plant
- generating plant
- grading plant
- heat generation plant
- heating plant
- heating water converter plant
- high-pressure air conditioning plant
- hydro-electric plant
- incineration plant
- indoor power plant
- industrial plant
- initial screening and washing plant
- lime softening plant
- low-head power plant
- low-level mixing plant
- low-pressure air conditioning plant
- manufacturing plant
- mechanical plant
- mixing plant
- mix-in-travel plant
- municipal treatment plant
- open-air plant
- open-air water power plant
- ozone plant
- package plant
- petrochemical plant
- piling plant
- placing plant
- power plant
- precast concrete plant
- precast plant
- proportioning plant
- pumping plant
- purification plant
- pyrolysis plant
- ready mixed concrete plant
- refrigerating plant
- refuse incineration plant
- refuse processing plant
- reinforcement cutting and bending plant
- river-run power plant
- river power plant
- road-making plant
- roadstone aggregate plant
- roof top plant
- screening plant
- secondary treatment plant
- sedimentation plant
- semioutdoor-type power plant
- sewage dispersal plant
- site mechanical plant
- sludge digestion plant
- sludge treating plant
- small powered plant
- solar plant
- spouting plant
- steam plant
- steam-power plant
- step-up plant
- structural steel plant
- tertiary plant
- tidal power plant
- transporting plant
- treatment plant
- vacuum dewatering plant
- ventilation plant
- volumetric batch plant
- washing and screening plant
- waste-disposal plant
- waste-heat utilization plant
- water-catchment plant
- water conversion plant
- water purification plant
- water softening plant
- water treatment plant
- weight batch plant
- zeolite water softening plant -
17 condition
состояние; условие; режим ( работы) ; pl. условия; параметры; кондиционироватьbe in a hot condition — находиться под током, быть включенным [в рабочем состоянии]
c.g. condition — положение центра тяжести, центровка
high glide-slope standoff condition — условие [режим] полёта выше (заданной) глиссады
in solid IFR conditions — в условиях полного отсутствия видимости, в сплошных облаках
instrument (flight, meteorological) condition — условия полёта по приборам
low glide-slope standoff condition — условие [режим] полёта ниже (заданной) глиссады
simulated reentry heating conditions — имитированные [моделированные] условия нагрева при входе в атмосферу
simulated zero gravity conditions — имитированные [моделированные] условия невесомости
under no wind conditions — в штилевых условиях, в безветрие
visual flight rules weather conditions — метеорологические условия, допускающие полет с визуальной ориентировкой
-
18 down
I
1.
adverb1) (towards or in a low or lower position, level or state: He climbed down to the bottom of the ladder.) (hacia) abajo2) (on or to the ground: The little boy fell down and cut his knee.) al suelo3) (from earlier to later times: The recipe has been handed down in our family for years.) a través de los tiempos4) (from a greater to a smaller size, amount etc: Prices have been going down steadily.) abajo5) (towards or in a place thought of as being lower, especially southward or away from a centre: We went down from Glasgow to Bristol.) abajo
2. preposition1) (in a lower position on: Their house is halfway down the hill.) abajo2) (to a lower position on, by, through or along: Water poured down the drain.) hacia abajo3) (along: The teacher's gaze travelled slowly down the line of children.) por
3. verb(to finish (a drink) very quickly, especially in one gulp: He downed a pint of beer.) tragarse rápidamente- downward- downwards
- downward
- down-and-out
- down-at-heel
- downcast
- downfall
- downgrade
- downhearted
- downhill
- downhill racing
- downhill skiing
- down-in-the-mouth
- down payment
- downpour
- downright
4. adjectiveHe is a downright nuisance!) total- downstream
- down-to-earth
- downtown
- downtown
- down-trodden
- be/go down with
- down on one's luck
- down tools
- down with
- get down to
- suit someone down to the ground
- suit down to the ground
II
noun(small, soft feathers: a quilt filled with down.) plumón- downie®- downy
down adv prep abajodon't look down! ¡no mires hacia abajo!she walked down the road bajó la calle andando down también combina con muchos verbos. Aquí tienes algunos ejemplostr[daʊn]1 (on bird) plumón nombre masculino; (on peach) pelusa; (on body, face) vello, pelusilla; (on upper lip) bozo, pelusilla————————tr[daʊn]1 (to a lower level) (hacia) abajo2 (at a lower level) abajo■ can you see that cottage down below in the valley? ¿ves aquella casita allá abajo en el valle?3 (along) por5 (in time) a través de■ why don't you go and lie down? ¿por qué no te echas?2 (at lower level) abajo■ down here/there aquí/allí abajo4 (less - of price, quantity, volume, etc)■ sales are down by 10% las ventas han bajado un diez por ciento5 (on paper, in writing)6 (of money - to be paid at once in cash) al contado; (- out of pocket) menos1 (to a lower level- escalator) de bajada; (- train) que va hacia las afueras2 familiar (finished, dealt with) acabado,-a, hecho,-a■ seven down, three to go! ¡he hecho siete, faltan tres!3 (not in operation) no operativo,-a4 familiar (depressed) deprimido,-a1 (knock over, force to ground) derribar, tumbar1 (to dog) ¡quieto!\SMALLIDIOMATIC EXPRESSION/SMALLdown to (as far as) hastadown under (en) Australiadown with...! ¡abajo...!to be down on somebody tenerle ojeriza a alguiento be down to something quedar sólo algoto be/come/go down with something SMALLMEDICINE/SMALL estar con algoto down tools dejar de trabajarto have a down on somebody tenerle ojeriza a alguien, tenerle manía a alguiento keep food down retener comidato put something down dejar algo■ can you put that book down for a second? ¿puedes dejar ese libro un momento?to put the phone down colgardown ['daʊn] vt1) fell: tumbar, derribar, abatir2) defeat: derrotardown adv1) downward: hacia abajo2)to lie down : acostarse, echarse3)to put down (money) : pagar un depósito (de dinero)4)to sit down : sentarse5)to take down, to write down : apuntar, anotardown adj1) descending: de bajadathe down elevator: el ascensor de bajada2) reduced: reducido, rebajadoattendance is down: la concurrencia ha disminuido3) downcast: abatido, deprimidodown n: plumón mdown prep1) : (hacia) abajodown the mountain: montaña abajoI walked down the stairs: bajé por la escalera2) along: por, a lo largo dewe ran down the beach: corrimos por la playa3) : a través dedown the years: a través de los añosadj.• acostado, -a adj.• descendente adj.• triste adj.adv.• abajo adv.• bajo adv.• hacia abajo adv.n.• borra s.f.• plumón s.m.• vello s.m.prep.• abajo de prep.v.• derrocar v.
I daʊn1)a) ( in downward direction)to look down — mirar (hacia or para) abajo
down, boy! — abajo!
b) ( downstairs)can you come down? — ¿puedes bajar?
2)a) ( of position) abajodown here/there — aquí/allí (abajo)
down under — (colloq) en Australia
b) ( downstairs)I'm down in the cellar — estoy aquí abajo, en el sótano
c) (lowered, pointing downward) bajadod) ( in position)the carpet isn't down yet — aún no han puesto or colocado la alfombra
e) ( prostrate)3) (of numbers, volume, intensity)my temperature is down to 38° C — la fiebre me ha bajado a 38° C
4)a) (in, toward the south)to go/come down south/to London — ir*/venir* al sur/a Londres
b) (at, to another place) (esp BrE)5)a) (dismantled, removed)once this wall is down — una vez que hayan derribado esta pared; see also burn, cut, fall down
b) ( out of action)the system is down — ( Comput) el sistema no funciona
c) ( deflated)6) ( in writing)he's down for tomorrow at ten — está apuntado or anotado para mañana a las diez
she's down as unemployed — consta or figura como desempleada
7) ( hostile)to be down on somebody — (colloq)
my teacher's down on me at the moment — la maestra me tiene ojeriza, la maestra la ha agarrado conmigo (AmL fam)
8) down toa) ( as far as) hastab) ( reduced to)c) ( to be done by)
II
1)a) ( in downward direction)b) ( at lower level)2)a) ( along)we drove on down the coast/the Mississippi — seguimos por la costa/a lo largo del Misisipí
b) ( further along)the library is just down the street — la biblioteca está un poco más allá or más adelante
c) (to, in) (BrE colloq)3) ( through)
III
1) (before n) ( going downward)the down escalator — la escalera mecánica de bajada or para bajar
2) ( depressed) (colloq) (pred) deprimido
IV
1) ua) ( on bird) plumón mb) (on face, body) vello m, pelusilla fc) (on plant, fruit) pelusa f
V
a) ( drink) beberse or tomarse rápidamenteb) ( knock down) \<\<person\>\> tumbar, derribar
I [daʊn] When down is an element in a phrasal verb, eg back down, glance down, play down, look up the verb.1. ADV1) (physical movement) abajo, hacia abajo; (=to the ground) a tierra•
to fall down — caerse•
I ran all the way down — bajé toda la distancia corriendo2) (static position) abajo; (=on the ground) por tierra, en tierrato be down — (Aer) haber aterrizado, estar en tierra; [person] haber caído, estar en tierra
he isn't down yet — (eg for breakfast) todavía no ha bajado
•
down by the river — abajo en la ribera•
down on the shore — abajo en la playa3) (Geog)•
he came down from Glasgow to London — ha bajado or venido de Glasgow a Londresto go down under — (Brit) * (=to Australia) ir a Australia; (=to New Zealand) ir a Nueva Zelanda
4) (in writing)5) (in volume, degree, status)I'm £20 down — he perdido 20 libras
•
I'm down to my last cigarette — me queda un cigarrillo nada más7) (=ill)8)down to: it's down to him — (=due to, up to) le toca a él, le incumbe a él
9) (as deposit)to pay £50 down — pagar un depósito de 50 libras, hacer un desembolso inicial de 50 libras
down with traitors! — ¡abajo los traidores!
11) (=completed etc)one down, five to go — uno en el bote y quedan cinco
12) (esp US)to be down on sb — tener manía or inquina a algn *
2. PREPlooking down this road, you can see... — mirando carretera abajo, se ve...
2) (=at a lower point on)he lives down the street (from us) — vive en esta calle, más abajo de nosotros
•
face down — boca abajo3. ADJ1) (=depressed) deprimido2) (=not functioning)3) (Brit) [train, line] de bajada4. VT*1) [+ food] devorar; [+ drink] beberse (de un trago), tragarse2) [+ opponent] tirar al suelo, echar al suelo; [+ plane] derribar, abatir- down tools5.Nto have a down on sb — (Brit) * tenerle manía or inquina a algn *
6.CPDdown bow N — (Mus) descenso m de arco
down cycle N — (Econ) ciclo m de caída
down payment N — (Econ) (=initial payment) entrada f ; (=deposit) desembolso m inicial
II
[daʊn]N (on bird) plumón m, flojel m ; (on face) bozo m ; (on body) vello m ; (on fruit) pelusa f ; (Bot) vilano m
III
[daʊn]N (Geog) colina fthe Downs — (Brit) las Downs (colinas del sur de Inglaterra)
* * *
I [daʊn]1)a) ( in downward direction)to look down — mirar (hacia or para) abajo
down, boy! — abajo!
b) ( downstairs)can you come down? — ¿puedes bajar?
2)a) ( of position) abajodown here/there — aquí/allí (abajo)
down under — (colloq) en Australia
b) ( downstairs)I'm down in the cellar — estoy aquí abajo, en el sótano
c) (lowered, pointing downward) bajadod) ( in position)the carpet isn't down yet — aún no han puesto or colocado la alfombra
e) ( prostrate)3) (of numbers, volume, intensity)my temperature is down to 38° C — la fiebre me ha bajado a 38° C
4)a) (in, toward the south)to go/come down south/to London — ir*/venir* al sur/a Londres
b) (at, to another place) (esp BrE)5)a) (dismantled, removed)once this wall is down — una vez que hayan derribado esta pared; see also burn, cut, fall down
b) ( out of action)the system is down — ( Comput) el sistema no funciona
c) ( deflated)6) ( in writing)he's down for tomorrow at ten — está apuntado or anotado para mañana a las diez
she's down as unemployed — consta or figura como desempleada
7) ( hostile)to be down on somebody — (colloq)
my teacher's down on me at the moment — la maestra me tiene ojeriza, la maestra la ha agarrado conmigo (AmL fam)
8) down toa) ( as far as) hastab) ( reduced to)c) ( to be done by)
II
1)a) ( in downward direction)b) ( at lower level)2)a) ( along)we drove on down the coast/the Mississippi — seguimos por la costa/a lo largo del Misisipí
b) ( further along)the library is just down the street — la biblioteca está un poco más allá or más adelante
c) (to, in) (BrE colloq)3) ( through)
III
1) (before n) ( going downward)the down escalator — la escalera mecánica de bajada or para bajar
2) ( depressed) (colloq) (pred) deprimido
IV
1) ua) ( on bird) plumón mb) (on face, body) vello m, pelusilla fc) (on plant, fruit) pelusa f
V
a) ( drink) beberse or tomarse rápidamenteb) ( knock down) \<\<person\>\> tumbar, derribar -
19 plant
- plant
- n1. оборудование инженерных систем здания
2. строительное оборудование (напр. землеройное, подъёмно-транспортное, для бетонных работ)
3. установка; агрегат; энергоблок; технологическая установка [система] ( в инженерных системах зданий)
4. электростанция
5. завод, фабрика; мастерская
- acetylene producing plant
- activated sludge plant
- aeration plant
- aeration-degassing plant
- aggregate batching plant
- aggregate preparation plant
- air conditioning plant
- air handling plant
- air supply plant
- all-dry cement plant
- all-wet cement plant
- augering plant
- automatic batching plant
- bank-filtered river water plant
- barge-mounted concrete plant
- batch plant
- batch mixing plant
- biological treatment plant
- block-making plant
- block plant
- boiler plant
- booster pumping plant
- builder's plant
- builder's small powered plant
- cement plant
- central plant
- central air conditioning plant
- central air-handling plant
- central boiler plant
- central heating plant
- central refrigerating plant
- chemical feed plant
- chlorination plant
- civil-engineering plant
- coating plant
- cold-storage plant
- compressor plant
- computerized plant
- concentrating plant
- concrete plant
- concrete production plant
- concrete spouting plant
- concreting plant
- construction plant
- contact stabilization plant
- continuous-mix plant
- conveying plant
- cooling plant
- crushing plant
- desalination plant
- desalting plant
- disposal plant
- diversion power plant
- drying plant
- dust arrestor plant
- dust extracting plant
- earth moving plant
- electric plant
- exhaust plant
- extended aeration plant
- filter plant
- filtration plant
- floating concrete plant
- floating pile-driving plant
- flotation plant
- freezing plant
- gas plant
- gas-distribution plant
- gas washing plant
- generating plant
- grading plant
- heat generation plant
- heating plant
- heating water converter plant
- high-pressure air conditioning plant
- hydro-electric plant
- incineration plant
- indoor power plant
- industrial plant
- initial screening and washing plant
- lime softening plant
- low-head power plant
- low-level mixing plant
- low-pressure air conditioning plant
- manufacturing plant
- mechanical plant
- mixing plant
- mix-in-travel plant
- municipal treatment plant
- open-air plant
- open-air water power plant
- ozone plant
- package plant
- petrochemical plant
- piling plant
- placing plant
- power plant
- precast concrete plant
- precast plant
- proportioning plant
- pumping plant
- purification plant
- pyrolysis plant
- ready mixed concrete plant
- refrigerating plant
- refuse incineration plant
- refuse processing plant
- reinforcement cutting and bending plant
- river-run power plant
- river power plant
- road-making plant
- roadstone aggregate plant
- roof top plant
- screening plant
- secondary treatment plant
- sedimentation plant
- semioutdoor-type power plant
- sewage dispersal plant
- site mechanical plant
- sludge digestion plant
- sludge treating plant
- small powered plant
- solar plant
- spouting plant
- steam plant
- steam-power plant
- step-up plant
- structural steel plant
- tertiary plant
- tidal power plant
- transporting plant
- treatment plant
- vacuum dewatering plant
- ventilation plant
- volumetric batch plant
- washing and screening plant
- waste-disposal plant
- waste-heat utilization plant
- water-catchment plant
- water conversion plant
- water purification plant
- water softening plant
- water treatment plant
- weight batch plant
- zeolite water softening plant
Англо-русский строительный словарь. — М.: Русский Язык. С.Н.Корчемкина, С.К.Кашкина, С.В.Курбатова. 1995.
-
20 operation
2. применение авиации (напр. в сельском хозяйстве)3. эксплуатация (напр. воздушного судна)4. управление (напр. авиакомпанией)5. действие; операция; работа; срабатывание6. pl. производство полётов; воздушные перевозки"see and avoid" operations — действия по обнаружению и уходу (от препятствия)
associated fire control operation — противопожарное патрулирование по пути выполнения основного задания
ICAO category I [II, III] operations — выполнение [производство] полётов по I-й [II-й, III-й] категории ИКАО
instrument flight rules operation — полёт по приборам, «слепой» полёт
2. приступать к выполнению полётаto come into operation — 1. вводить в эксплуатацию
2. управлять полётомto govern the operation — 1. руководить эксплуатацией
to im- pair the operation — нарушать работу (напр. бортовых систем)
2. приводить в действие;to put in(to) operation — 1. вводить в эксплуатацию
— asymmetrical flaps operation— from landing operations— hovering operation— in operation— passenger-carrying operations— solo supervised operation— to cancel operation— to provide operation
См. также в других словарях:
Power optimization (EDA) — Power optimization refers to the use of electronic design automation tools to optimize (reduce) the power consumption of a digital design, while preserving the functionality.Introduction and historyThe increasing speed and complexity of today’s… … Wikipedia
Level 7 — is a 1959 science fiction novel by the American writer Mordecai Roshwald. It is told from the first person perspective (diary) of a modern soldier X 127 living in the underground military complex Level 7, where he was expected to reside… … Wikipedia
Power outage — A power outage (also known as power cut , power failure , power loss , or blackout ) is the loss of the electricity supply to an area.The reasons for a power failure can for instance be a defect in a power station, damage to a power line or other … Wikipedia
Level 42 — Infobox musical artist 2 Name = Level 42 Img capt = Level 42 in 1988: The Late Alan Murphy (Guitar), Mike Lindup (Keyboards/Vocals), Mark King (Bass/Vocals), Gary Husband (Drums). Background = group or band Origin = Isle of Wight, England… … Wikipedia
Power Macintosh G3 — Infobox Computer name = Power Macintosh G3 (Beige) developer = Apple Computer, Inc. type = Desktop photo = caption = The beige Power Macintosh G3 minitower first release date = November, 1997 discontinuation date = January, 1999 processor =… … Wikipedia
Audio power — Sound measurements Sound pressure p, SPL Particle velocity v, SVL Particle displacement ξ Sound intensity I, SIL Sound power Pac Sound power level SWL Sound energy Sound energy density … Wikipedia
Solar power satellite — A solar power satellite, or SPS or Powersat, as originally proposed would be a satellite built in high Earth orbit that uses microwave power transmission to beam solar power to a very large antenna on Earth. Advantages of placing the solar… … Wikipedia
Smart power grid — Smart Grid is a transformed electricity transmission and distribution network or grid that uses robust two way communications, advanced sensors, and distributed computers to improve the efficiency, reliability and safety of power delivery and use … Wikipedia
Space-based solar power — Left: Part of the solar energy is lost on its way through the atmosphere by the effects of reflection and absorption. Right: Space based solar power systems convert sunlight to microwaves outside the atmosphere, avoiding these losses, and the… … Wikipedia
One Power — In The Wheel of Time fantasy series by Robert Jordan, the One Power is the force that maintains the continuous motion of the Wheel of Time. It comes from the True Source, and it is separated into two halves: saidin /saɪˈd … Wikipedia
List of Initial D characters and teams — This is a list of characters from the anime and manga series Initial D. Contents 1 Main characters (Fujiwara Tofu Shop) 1.1 Takumi Fujiwara 1.2 Bunta Fujiwara 2 Projec … Wikipedia